Login / Register
Benefits
Featured resources
Details
The world’s first 200+ layer data center NVMe SSD delivers best-in-class performance, enables a more environmentally sustainable data center, and offers superior value that eclipses QLC SSDs.
Resources & documentation
1. Statements are based on Micron Data Center Workload Engineering (DCWE) team comparisons of the Micron 6500 ION SSD and the Solidigm® D5-P5316 30.72TB QLC SSD. Value means the combination of performance, features, longevity, capacity, and purchase price. Performance refers to publicly available information regarding IOPS, GB/s, or both.
2. Purchase cost statement based on public information available at the time of this document’s publication.
3. The Micron 6500 ION SSD’s 30.72TB capacity helps reduce servers and physical rack space required for the same storage capacity as compared to smaller capacity SSD. Fewer servers enable lower power/cooling expenses and enable lower additional operating expenses when software is licensed by chassis, CPU, or CPU core.
4. Comparisons to the Solidigm D5-P5316 30.72TB SSD are based on public information available at the time of this document’s publication and on Micron DCWE testing. Latency refers to average read latency for 4KB 100% random read workload at queue depth (QD) of 1. Sequential write statements are based on 128KB 100% sequential write workload. Random IOPS statements based on 4KB, 100% random workloads. 58% improvement measured at QD32 and QD64. Measurements made at QDs 1 to 256 yielded a range of improvements from -7% to 58% when compared to the competitor’s drive. 62% improvement measured at QD32. Other measurements were made at QDs ranging from 1 to 256 and yielded a range of 18% to 62% improvements over the competitor’s drive. The ‘over 30 times more’ statement is for 4KB random write IOPS at QD128. The 4KB random write IOPS at QD1 is over 10 times more.
5. Comparisons to the Solidigm D5-P5316 30.72TB SSD are based on public information available at the time of this document’s publication. 20% less power based on Micron 6500 ION default 4KB, 100% random, 100% read power = 20 watts, Solidigm P5316 default power consumption for 4KB, 100% random, 100% read = 25 watts. Micron 6500 ION default 4KB, 100% random read IOPS = 1000KIOPS. 100% random read power = 20 watts. Solidigm P5316 default ION default 4KB, 100% random read IOPS = 800KIOPS and its 100% power consumption for 4KB, 100% random read = 25 watts. 1000KIOPS/20W vs. 800KIOPS/25W equates to 56% greater power efficiency for 4KB, 100% random read IOPS per watt comparison.
6. Solidigm documentation states that its endurance is rated using a 64KB 100% random write workload and is 0.41 DWPD. Rated Solidigm D5-P5316 endurance at 64KB transfer size is estimated to be 16x the rated endurance for a 4KB transfer size, yielding a 4KB value of 0.0256 (0.41/16). Micron 6500 ION rates endurance using 4KB random write workloads and is 0.3 DWPD.
7. Unformatted capacity. 1GB = 1 billion bytes, formatted capacity is less. Based on standard, 1U server that can house up to 32 x E1.L SSDs, each of which is 30.72TB (usable). 32 x 32TB = 1024TB (unformatted). 32 x 30.72TB = 983 TB (usable); Assuming standard production 42U rack with 36U available for server storage, the total server storage available from the SSDs is 36 x 32 x 32TB = 36,864 TB (unformatted) and 36 x 32 x 30.72TB = 35,389TB = 35.389PB (usable).